Unique Continuation Property of Solutions to General Second Order Elliptic Systems Honda
A global unique continuation property (UCP) from the boundary for solutions to a viscoelastic system with a memory term is presented. The density and elasticity tensors are assumed to be real analytic. The tensors can be anisotropic and satisfy physically natural conditions such as full symmetry and strong convexity. The global UCP is given in terms of the travel time of the slowest wave of the viscoelastic system, which is the optimal description for the global UCP in our setup.
Mathematics Subject Classification: 35B60, 35Q74.
Citation: Matthias Eller, Naofumi Honda, Ching-Lung Lin, Gen Nakamura. Global unique continuation from the boundary for a system of viscoelasticity with analytic coefficients and a memory term. Inverse Problems and Imaging, doi: 10.3934/ipi.2022049
References:
| [1] | R. L. Bishop, There is more than one way to frame a curve, Amer. Math. Monthly, 82 (1975), 246-251. doi: 10.1080/00029890.1975.11993807. |
| [2] | T. S. Brown, S. Du, H. Eruslu and F.-J. Sayas, Analysis of models for viscoelastic wave propagation, Appl. Math. Nonlinear Sci., 3 (2018), 55-96. doi: 10.21042/AMNS.2018.1.00006. |
| [3] | C. I. C$\widehat{ \rm a }$rstea, G. Nakamura and L. Oksanen, Uniqueness for the inverse boundary value problem of piecewise homogeneous anisotropic elasticity in the time domain, Trans. Amer. Math. Soc., 373 (2020), 3423-3443. doi: 10.1090/tran/8014. |
| [4] | R. Christensen, Theory of Viscoelasticity, 2nd edition, Dover Publications, New York, 1982. doi: 10.1115/1.3408900. |
| [5] | J. B. Conway, A Course in Functional Analysis, Second edition, Graduate Texts in Mathematics, 96. Springer-Verlag, New York, 1990. |
| [6] | C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Differential Equations, 7 (1970), 554-569. doi: 10.1016/0022-0396(70)90101-4. |
| [7] | C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308. doi: 10.1007/BF00251609. |
| [8] | M. V. de Hoop, C.-L. Lin and G. Nakamura, Holmgren-John unique continuation theorem for viscoelastic systems, time-dependent problems in imaging and parameter identification, Springer, Cham, (2021), 287-301. |
| [9] | M. V. de Hoop, G. Nakamura and J. Zhai, Unique recovery of piecewise analytic density and stiffness tensor from the elastic-wave Dirichlet-to-Neumann map, SIAM J. Appl. Math., 79 (2019), 2359-2384. doi: 10.1137/18M1232802. |
| [10] | M. Eller and D. Toudykov, A global Holmgren Theorem for multi-dimensional hyperbolic partial differential equations, App. Anal., 91 (2012), 69-80. doi: 10.1080/00036811.2010.538685. |
| [11] | W. Littman, Remarks on global uniqueness theorems for partial differential equations, Differential Geometric Methods in the Control of Partial Differential Equations, Contemp. Math., Amer. Math. Soc., Providence, RI, 268 (2000), 363-371. doi: 10.1090/conm/268/04318. |
| [12] | J. R. McLaughlin and J.-R. Yoon, Finite propagation speed of waves in anisotropic viscoelastic media, SIAM J. Appl. Math., 77 (2017), 1921-1936. doi: 10.1137/16M1099959. |
| [13] | J. E. Muñoz Rivera and E. Cabanillas Lapa, Decay rates of solutions of an anisotropic inhomogeneous n-dimensional viscoelastic equation with polynomial decay kernels, Comm. Math. Phys., 177 (1996), 583-602. doi: 10.1007/BF02099539. |
| [14] | G. Nakamura and M. Oliva, Exponential decay of solutions to initial boundary value problem for anisotropic visco-elastic systems, Rend. Istit. Mat. Univ. Trieste, 48 (2016), 5-19. doi: 10.13137/2464-8728/13149. |
| [15] | K. Yosida, Functional Analysis, Second edition, Die Grundlehren der mathematischen Wissenschaften, Band 123 Springer-Verlag New York, Inc., New York, 1968. |
show all references
References:
| [1] | R. L. Bishop, There is more than one way to frame a curve, Amer. Math. Monthly, 82 (1975), 246-251. doi: 10.1080/00029890.1975.11993807. |
| [2] | T. S. Brown, S. Du, H. Eruslu and F.-J. Sayas, Analysis of models for viscoelastic wave propagation, Appl. Math. Nonlinear Sci., 3 (2018), 55-96. doi: 10.21042/AMNS.2018.1.00006. |
| [3] | C. I. C$\widehat{ \rm a }$rstea, G. Nakamura and L. Oksanen, Uniqueness for the inverse boundary value problem of piecewise homogeneous anisotropic elasticity in the time domain, Trans. Amer. Math. Soc., 373 (2020), 3423-3443. doi: 10.1090/tran/8014. |
| [4] | R. Christensen, Theory of Viscoelasticity, 2nd edition, Dover Publications, New York, 1982. doi: 10.1115/1.3408900. |
| [5] | J. B. Conway, A Course in Functional Analysis, Second edition, Graduate Texts in Mathematics, 96. Springer-Verlag, New York, 1990. |
| [6] | C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Differential Equations, 7 (1970), 554-569. doi: 10.1016/0022-0396(70)90101-4. |
| [7] | C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308. doi: 10.1007/BF00251609. |
| [8] | M. V. de Hoop, C.-L. Lin and G. Nakamura, Holmgren-John unique continuation theorem for viscoelastic systems, time-dependent problems in imaging and parameter identification, Springer, Cham, (2021), 287-301. |
| [9] | M. V. de Hoop, G. Nakamura and J. Zhai, Unique recovery of piecewise analytic density and stiffness tensor from the elastic-wave Dirichlet-to-Neumann map, SIAM J. Appl. Math., 79 (2019), 2359-2384. doi: 10.1137/18M1232802. |
| [10] | M. Eller and D. Toudykov, A global Holmgren Theorem for multi-dimensional hyperbolic partial differential equations, App. Anal., 91 (2012), 69-80. doi: 10.1080/00036811.2010.538685. |
| [11] | W. Littman, Remarks on global uniqueness theorems for partial differential equations, Differential Geometric Methods in the Control of Partial Differential Equations, Contemp. Math., Amer. Math. Soc., Providence, RI, 268 (2000), 363-371. doi: 10.1090/conm/268/04318. |
| [12] | J. R. McLaughlin and J.-R. Yoon, Finite propagation speed of waves in anisotropic viscoelastic media, SIAM J. Appl. Math., 77 (2017), 1921-1936. doi: 10.1137/16M1099959. |
| [13] | J. E. Muñoz Rivera and E. Cabanillas Lapa, Decay rates of solutions of an anisotropic inhomogeneous n-dimensional viscoelastic equation with polynomial decay kernels, Comm. Math. Phys., 177 (1996), 583-602. doi: 10.1007/BF02099539. |
| [14] | G. Nakamura and M. Oliva, Exponential decay of solutions to initial boundary value problem for anisotropic visco-elastic systems, Rend. Istit. Mat. Univ. Trieste, 48 (2016), 5-19. doi: 10.13137/2464-8728/13149. |
| [15] | K. Yosida, Functional Analysis, Second edition, Die Grundlehren der mathematischen Wissenschaften, Band 123 Springer-Verlag New York, Inc., New York, 1968. |
Figure 1.
on
Figure 2. An example of the cross-section of a slowness surface in the
-plane
Figure 1. The sets
with convex
, the projection of
at
and the surface
in blue (left). Homotopy of timelike curves with curve
for
in red for a specific
and
(right)
Figure A.1.
.
for
Figure A.2.
for
| [1] | José G. Llorente. Mean value properties and unique continuation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185 |
| [2] | Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103 |
| [3] | Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613 |
| [4] | Shaojie Yang, Tianzhou Xu. Symmetry analysis, persistence properties and unique continuation for the cross-coupled Camassa-Holm system. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 329-341. doi: 10.3934/dcds.2018016 |
| [5] | Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067 |
| [6] | Jacques Féjoz. On "Arnold's theorem" on the stability of the solar system. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3555-3565. doi: 10.3934/dcds.2013.33.3555 |
| [7] | Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control and Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27 |
| [8] | Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control and Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012 |
| [9] | Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control and Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165 |
| [10] | A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515 |
| [11] | Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems and Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309 |
| [12] | Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047 |
| [13] | Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013 |
| [14] | Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems and Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619 |
| [15] | Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827 |
| [16] | Roberto Triggiani. Unique continuation of boundary over-determined Stokes and Oseen eigenproblems. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 645-677. doi: 10.3934/dcdss.2009.2.645 |
| [17] | Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure and Applied Analysis, 2021, 20 (2) : 547-558. doi: 10.3934/cpaa.2020280 |
| [18] | Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623 |
| [19] | Taige Wang, Dihong Xu. A quantitative strong unique continuation property of a diffusive SIS model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1599-1614. doi: 10.3934/dcdss.2022024 |
| [20] | Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. An existence theorem for the magneto-viscoelastic problem. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 435-447. doi: 10.3934/dcdss.2012.5.435 |
Source: https://www.aimsciences.org/article/doi/10.3934/ipi.2022049
0 Response to "Unique Continuation Property of Solutions to General Second Order Elliptic Systems Honda"
Post a Comment